Uniform approximation with diophantine side-conditions of continuous functions
نویسندگان
چکیده
منابع مشابه
Diophantine Approximation with Arithmetic Functions, Ii
We prove that real numbers can be well-approximated by the normalized Fourier coefficients of newforms.
متن کاملDiophantine Approximation with Arithmetic Functions, I
We prove a strong simultaneous Diophantine approximation theorem for values of additive and multiplicative functions provided that the functions have certain regularity on the primes.
متن کاملInhomogeneous Diophantine approximation with general error functions
Let α be an irrational and φ : N → R be a function decreasing to zero. For any α with a given Diophantine type, we show some sharp estimations for the Hausdorff dimension of the set Eφ(α) := {y ∈ R : ‖nα− y‖ < φ(n) for infinitely many n}, where ‖ · ‖ denotes the distance to the nearest integer.
متن کاملMetric Diophantine Approximation with Respect to Planar Distance Functions
We outline a proof of an analogue of Khintchine’s Theorem in R, where the ordinary height is replaced by a distance function satisfying an irrationality condition as well as certain decay and symmetry conditions.
متن کاملUniform approximation of continuous functions on compact sets by biharmonic functions
We give a characterization of functions that are uniformly approximable on a compact subset K of R by biharmonic functions in neighborhoods of K.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arkiv för Matematik
سال: 1958
ISSN: 0004-2080
DOI: 10.1007/bf02589509